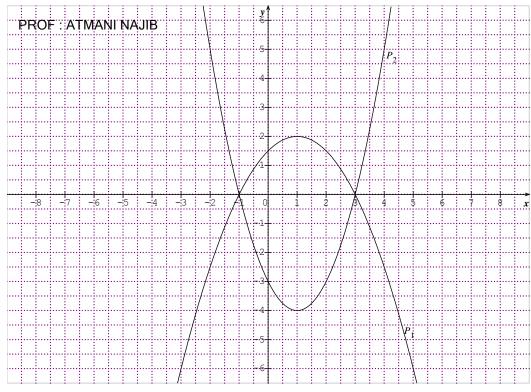
Exercice 1

Soit C_1 la parabole d'équation $y = 2x^2 + 4x + 4$ et C_2 la parabole d'équation $y = x^2 - 3x - 6$.

On note f la fonction représentée par la courbe C_1 et g la fonction représentée par la courbe C_2 .

- a) Étudier le signe de f(x) g(x) pour tout x réel.
- b) Déduire de la question précédente la position de C_1 par rapport à C_2 .
- c) Vérifier les résultats à l'aide de la calculatrice (représentation de C_1 et C_2)

Exercice 2


Soit les fonctions f_1 et f_2 , définies sur $\mathbb R$ par:

$$f_1(x) = -\frac{1}{2}x^2 + x + \frac{3}{2}$$
 et $f_2(x) = x^2 - 2x - 3$.

On note P_1 et P_2 les courbes respectives de f_1 et f_2 dans le repère orthogonal $(0; \vec{\iota}, \vec{j})$

- 1) a) Résoudre par le calcul l'inéquation $f_1(x) \le 0$
 - b) Résoudre par le calcul l'inéquation $f_2(x) > 0$
- 2) a) Résoudre par le calcul l'équation $f_1(x) = f_2(x)$
 - b) Déterminer les coordonnées des points d'intersection de P_1 et P_2
- 3) a) Déterminer le signe de $f_1(x) f_2(x)$ suivant les valeurs de x.
 - b) En déduire la position relative des courbes P_1 et P_2
- 4) On donne ci-dessous la représentation graphique de P_1 et P_2

Vérifier les résultats trouvés aux questions 1, 2 et 3.

PROF: ATMANI NAJIB

http://www.xriadiat.com

Exercice 3 Tronc commun Sciences

Soit les fonctions f_1 et f_2 , définies sur $\mathbb R$ par:

$$f_1(x) = -\frac{1}{2}x^2 + \frac{5}{2}x$$
 et $f_2(x) = x^2 - 5x + 6$.

On note P_1 et P_2 les courbes respectives de f_1 et f_2 dans le repère orthogonal $(0; \vec{\iota}, \vec{j})$

- 1) a) Résoudre par le calcul l'inéquation $f_1(x) \le 0$
 - b) Résoudre par le calcul l'inéquation $f_2(x) > 0$
- 2) a) Résoudre par le calcul l'équation $f_1(x) = f_2(x)$
 - b) Déterminer les coordonnées des points d'intersection de P_1 et P_2
- 3) a) Déterminer le signe de $f_1(x) f_2(x)$ suivant les valeurs de x.
 - b) En déduire la position relative des courbes P_1 et P_2
- 4) Après avoir donné un tableau de valeurs pour chacune des fonctions entre -2 et 6, tracer la représentation graphique de P_1 et P_2 dans un repère orthonormal $(0; \vec{\iota}, \vec{\jmath})$.

PROF : ATMANI NAJIB http://www.xriadiat.com