Région de Fès Meknès (Taza Taounat) 2018 (Session Normale)

Exercice1: 4.5points (1pt +0.5pt +1pt+2pt)

- 1) Résoudre dans \mathbb{R} l'équation suivante : $-2x^2 + 4x + 6 = 0$
- 2) a) Vérifier que : $-2(x+1)(x-3) = -2x^2 + 4x + 6$
- b) Résoudre dans \mathbb{R} l'inéquation suivante : $-2x^2 + 4x + 6 \le 0$
- 3) Déterminer x et y tel que : $\begin{cases} 3x y = 2 \\ 4x + y = 5 \end{cases}$

Exercice2: 3points (1pt +1pt +1pt)

Dans Une petite usine il Ya 4 hommes et 6 femmes

- 1)Déterminer le pourcentage de femmes dans cette usine
- 2)Le propriétaire de l'usine choisi parmi les ouvriers et les ouvrières un groupe de 3 personnes
- a) Quel est le nombre de groupes possibles ?
- b) Quel est le nombre de groupes contenant 1 hommes et 2 femmes ?

Exercice3: 4points (1pt +1pt +1pt+1pt)

1) Soit $(u_n)_n$ une suite géométrique tel que $u_7 = 6$ et $u_8 = 12$

Déterminer la raison q de cette suite

- 2)Soit $(v_n)_n$ une suite tel que : $v_n = 3n 5$: $\forall n \in \mathbb{N}$
- a) Calculer: v_0 et v_{39}
- b) Montrer que de la suite $(v_n)_n$ est une suite arithmétique de raison r=3
- c) Calculer la somme suivante : $S = v_0 + v_1 + \cdots + v_{39}$

Exercice4: 3points (1pt +1pt +1pt)

- Soit *f* la fonction définie par : $f(x) = \frac{2x+7}{3x-3}$
- 1)Déterminer D_f
- 2) Calculer : $\lim_{x \to +\infty} f(x)$ et $\lim_{\substack{x \to 1 \\ x \succ 1}} f(x)$
- 3) Calculer : $\forall x \in D_f$; f'(x) avec f' la fonction dérivée de f

Exercice5 : 5.5points (1pt +1pt +1pt+1.5pt +1pt)

Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 - 3x^2 + 2$

- 1) Calculer: $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to -\infty} g(x)$
- 2) Vérifier que : $\forall x \in \mathbb{R}$; g'(x) = 3x(x-2)
- 3) Calculer: g(0) et g(1) et g(2)
- 4) En déduire le tableau de variations de f sur $\mathbb R$
- 5) Calculer le nombre dérivé : g'(1) et en déduire l'équation de la tangente à la courbe de g au point d'abscisse 1

Prof: Atmani najib http://www.xriadiat.com

Solution:

Exercice1:1) Calculons le discriminant de l'équation $-2x^2 + 4x + 6 = 0$: a = -2, b = 4 et c = 6

Donc: $\Delta = b^2 - 4ac = 4^2 - 4x (-2) \times 6 = 16+48 = 64$

Comme Δ > 0, l'équation possède deux solutions distinctes :

Les solutions sont :
$$x_1 = \frac{-4 + \sqrt{64}}{2 \times (-2)} = \frac{-4 + 8}{-4} = \frac{4}{-4} = -1$$
 et $x_2 = \frac{-4 - \sqrt{64}}{2 \times (-2)} = \frac{-4 - 8}{-4} = \frac{-12}{-4} = 3$

Par suite : $S = \{-1, 3\}$

2) a)

$$-2(x+1)(x-3) = -2(x^{2} - 3x + x - 3)$$

$$= -2(x^{2} - 2x - 3)$$

$$= -2x^{2} + 4x + 6$$

2)
$$-2x^2 + 4x + 6 \le 0$$

Les racines de $-2x^2 + 4x + 6$ sont : $x_1 = -1$ et $x_2 = 3$

On donc le tableau de signe suivant : a = -2 < 0

x	$-\infty$	-1		3	$+\infty$
$-2x^2+4x+6$	_	þ	+	þ	_

D'où : $S =]-\infty; -1] \cup [3; +\infty[$

3) Résolution dans
$$\mathbb{R}^2$$
 du système :
$$\begin{cases} 3x - y = 2 & (1) \\ 4x + y = 5 & (2) \end{cases}$$

Utilisons la méthode par combinaison linéaire :

Donc: (2)+(1) 3x-y+4x+y=2+5

Équivaut à : 7x = 7

Équivaut à : $x = \frac{7}{7} = 1$ et on remplace dans : 4x + y = 5 (2)

Équivaut à : $4 \times 1 + y = 5$ C'est à dire : y = 5 - 4 = 1

Donc: x = 1 et y = 1

Exercice2: 1) le pourcentage de femmes dans cette usine est : $P\% = 100 \times \frac{6}{10} = 60\%$

2)a)
$$C_{10}^3 = \frac{A_{10}^3}{3!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{10 \times 3 \times 3 \times 2 \times 4}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120$$

Le nombre d'ensembles possibles est : 120

b) le nombre d'ensembles contenant 1 hommes et 2 femmes est : $C_4^1 \times C_6^2$

$$C_6^2 = \frac{A_6^2}{2!} = \frac{6 \times 5}{2 \times 1} = \frac{30}{2} = 15$$
 et $C_4^1 = 4$ car : $C_n^1 = n$

Le nombre d'ensembles contenant 1 hommes et 2 femmes est : $4 \times 15 = 60$

Exercice3: 1) la raison q??

On a : $(u_n)_n$ est une suite géométrique

Donc : $u_8 = qu_7$ Donc : $12 = q \times 6$

Prof: Atmani najib http://www.xriadiat.com

Donc :
$$q = \frac{12}{6} = 2$$

2) a) On a : $v_n = 3n - 5$: $\forall n \in \mathbb{N}$

Donc: $v_0 = 3 \times 0 - 5 = 0 - 5 = -5$ et $v_{39} = 3 \times 39 - 5 = 117 - 5 = 112$

b)
$$v_{n+1} - v_n = (3(n+1)-5)-(3n-5) = 3n+3-5-3n+5=3=r$$

Donc: $v_{n+1} - v_n = 3 = r \quad \forall n \in \mathbb{N}$

Donc: $(v_n)_n$ une suite arithmétique tel que son premier terme $v_0 = -5$ et sa raison r = 3

c)
$$(v_n)_n$$
 une suite arithmétique donc : $S = v_0 + v_1 + \dots + v_{39} = (39 - 0 + 1) \frac{v_0 + v_{39}}{2}$

$$S = 40 \frac{-5 + 112}{2} = 20 \frac{107}{2} = 10 \times 107 = 1070$$

Exercice4:1) $D_f = \{x \in \mathbb{R} / 3x - 3 \neq 0\}$

$$3x - 3 = 0 \Leftrightarrow 3x = 3 \Leftrightarrow x = \frac{3}{3} = 1$$

$$D_f = \mathbb{R} - \{1\} = \left] - \infty; 1 \right[\cup \left] 1; + \infty \right[$$

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+7}{3x-3} = \lim_{x \to +\infty} \frac{2x}{3x} = \frac{2}{3}$$

b)
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{2x + 7}{3x - 3}$$

On a:
$$\lim_{x \to 1^+} 2x + 7 = 2 \times 1 + 7 = 2 + 7 = 9$$
 et $\lim_{x \to 1^+} 3x - 3 = 0$

x	$-\infty$	1	$+\infty$
3x-3	I	þ	+

Donc:
$$\lim_{x \to 1^+} f(x) = +\infty$$

2) Calculer:
$$\forall x \in]-\infty; 1[\cup]1; +\infty[; f'(x)] = \left(\frac{2x+7}{3x-3}\right)'$$

On utilise la formule :
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$f'(x) = \left(\frac{2x+7}{3x-3}\right)' = \frac{\left(2x+7\right)'\left(3x-3\right) - \left(2x+7\right)\left(3x-3\right)'}{\left(3x-3\right)^2} = \frac{2\left(3x-3\right) - \left(2x+7\right) \times 3}{\left(3x-3\right)^2}$$

$$f'(x) = \frac{6x - 6 - 6x - 21}{(3x - 3)^2} = \frac{-27}{(3x - 3)^2}$$

Exercice5 : 1) Calcul de : $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to -\infty} g(x)$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^3 - 3x^2 + 2 = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^3 - 3x^2 + 2 = \lim_{x \to -\infty} x^3 = -\infty$$

2)
$$\forall x \in \mathbb{R}$$
: $g'(x) = (x^3 - 3x^2 + 2)' = 3x^2 - 3 \times 2x + 0 = 3x^2 - 6x = 3x(x - 2)$

3) On a:
$$g(x) = x^3 - 3x^2 + 2$$

Prof : Atmani najib http://www.xriadiat.com

Donc:
$$g(0) = 0^3 - 3 \times 0^2 + 2 = 0 - 0 + 2 = 2$$

$$g(1) = 1^3 - 3 \times 1^2 + 2 = 1 - 3 + 2 = 0$$

$$g(2) = 2^3 - 3 \times 2^2 + 2 = 8 - 12 + 2 = -2$$

4)
$$\forall x \in \mathbb{R}$$
 $g'(x) = 3x(x-2)$

$$3x(x-2)=0 \Leftrightarrow 3x=0 \text{ ou } x-2=0 \Leftrightarrow x=0 \text{ ou } x=2$$

Le tableau de signe est le suivant :

$$g'(x) = 3x^2 - 6x$$
 : $a = 3 > 0$

x	$-\infty$	0		2	$+\infty$
$3x^{2}-6x$	+	þ	_	þ	+

Donc: g est une fonction strictement croissante dans $]-\infty;0]$ et sur $[2;+\infty[$

Et g est une fonction strictement décroissante dans [0;2]

Le tableau de variation de g est :

x	$-\infty$	0		2	$+\infty$
g'(x)	+	þ	-	þ	+
g(x)	$-\infty$	√ 2\		-2 ⁻	→ +∞

Car:
$$g(0) = 2$$
 et $g(2) = -2$

On a:
$$g'(x) = 3x(x-2) \quad \forall x \in \mathbb{R}$$

Donc:
$$g'(1) = 3 \times 1(1-2) = 3 \times (-1) = -3$$

Est:
$$(T): y = g(a) + g'(a)(x - a)$$

On a :
$$a = 1$$
 donc : L'équation de la tangente à la courbe de g au point d'abscisse 1

Est:
$$(T): y = g(1) + g'(1)(x-1)$$

On a :
$$g(1) = 0$$
 Et on a : $g'(1) = -3$

Donc:
$$(T)$$
: $y = 0-3(x-1)$

Donc:
$$(T): y = -3x + 3$$